Rumus Operasi Matriks (Matriks Inverse, Transpose, dan Identitas) Beserta Contohnya
Pada pelajaran matematika terdapat materi operasi matriks. Materi operasi matriks tersebut adalah suatu gabungan beberapa simbol, bilangan maupun ekspresi yang memiliki bentuk persegi panjang dengan urutan baris dan kolom. Matriks tersebut digabung untuk dioperasikan menjadi bentuk yang paling kecil. Mungkin anda sudah paham mengenai apa itu matriks dan bagaimana bentuknya. Pada kesempatan kali ini saya akan menjelaskan mengenai penjelasan operasi matriks beserta contohnya. Langsung saja dapat anda simak dibawah ini.
Baik rumus matriks inverse, rumus matriks transpose, dan rumus matriks identitas dapat dengan mudah kita temukan dalam pembelajaran matematika di sekolah. Materi matriks memang sangat rumit jika kita tidak memperhatikan dengan seksama penjelasan dari guru. Disamping itu kita juga harus teliti dalam hal perkalian, penjumlahan maupun pembagian dan pengurangan.
Contoh soal operasi matriks sendiri juga sering kita temukan dalam buku paket pedoman siswa maupun buku buku latihan yang dapat dibeli di toko buku setempat. Umumnya untuk mengasah pengetahuan kita setelah membaca materi rumus matriks inverse, transpose, dan identitas kita dapat membeli buku kumpulan contoh soal matriks lalu mengerjakannya.
Operasi matriks berupa pengurangan dan penjumlahan
Untuk lebih jelasnya dapat anda simak contoh penjumlahan matriks dibawah ini.
Dalam perkalian matriks terdapat istilah ordo matriks. Ordo tersebut ialah suatu elemen yang menerapkan jumlah baris dengan jumlah kolom pada operasi matriks. Berikut contoh ordo matriks dengan 6 buah elemen, sehingga mendapatkan hasil ordo matriks 3x2.
Matriks Identitas
Pada pelajaran matematika terdapat materi operasi matriks. Materi operasi matriks tersebut adalah suatu gabungan beberapa simbol, bilangan maupun ekspresi yang memiliki bentuk persegi panjang dengan urutan baris dan kolom. Matriks tersebut digabung untuk dioperasikan menjadi bentuk yang paling kecil. Mungkin anda sudah paham mengenai apa itu matriks dan bagaimana bentuknya. Pada kesempatan kali ini saya akan menjelaskan mengenai penjelasan operasi matriks beserta contohnya. Langsung saja dapat anda simak dibawah ini.
Baik rumus matriks inverse, rumus matriks transpose, dan rumus matriks identitas dapat dengan mudah kita temukan dalam pembelajaran matematika di sekolah. Materi matriks memang sangat rumit jika kita tidak memperhatikan dengan seksama penjelasan dari guru. Disamping itu kita juga harus teliti dalam hal perkalian, penjumlahan maupun pembagian dan pengurangan.
Contoh soal operasi matriks sendiri juga sering kita temukan dalam buku paket pedoman siswa maupun buku buku latihan yang dapat dibeli di toko buku setempat. Umumnya untuk mengasah pengetahuan kita setelah membaca materi rumus matriks inverse, transpose, dan identitas kita dapat membeli buku kumpulan contoh soal matriks lalu mengerjakannya.
Contoh :
Sudah saya jelaskan diatas bahwa matriks adalah suatu gabungan beberapa simbol, bilangan maupun ekspresi yang memiliki bentuk persegi panjang dengan urutan baris dan kolom. Bilangan yang terdapat dalam operasi matriks bernama anggota atau elemen matriks. Dibawah ini terdapat contoh bilangan matriks yang memiliki susunan 2 baris dan 3 kolom.
Matriks tersebut juga dapat digunakan untuk memecahkan masalah masalah pada operasi matematika seperti transformasi linear yang berbentuk fungsi linear umum berupa rotasi 3 menit dan dapat menyelesaikan masalah persamaan linear. Operasi matriks juga dapat terdapat sebuah variabel sehingga dapat dikalikan, dikurangi, dijumlahkan, maupun didekomposisikan. Dalam melakukan penghitungan operasi matriks dapat menggunakan representasi matriks agar lebih teratur. Maka pada penghitungan matriks dapat menghasilkan struktur dibawah ini.
Rumus matriks |
Dalam menghitung operasi matriks dapat menggunakan beberapa cara. Berikut cara menghitung bilangan bilangan matriks.
Dalam melakukan penjumlahan maupun pengurangan pada matriks harus melihat apakah bentuk serta jenisnya sama. Operasi matriks ini harus memiliki bentuk dan jenis yang sama. Elemen matriks yang dapat dikurangkan maupun dijumlahkan harus memiliki letak yang sama. Sehingga memiliki struktur penjumlahan ataupun pengurangan dibawah ini:
rumus operasi matriks penjumlahan dan pengurangan |
Untuk lebih jelasnya dapat melihat proses penjumlahan dan pengurangan matriks dibawah ini.
Perkalian Skalar Matriks
Operasi matriks selanjutnya ialah mengalikan matriks dengan versi skalar. Perkalian ini menggunakan struktur pengalian kolom ke baris kemudian dijumlahkan pada tipe kolom yang sama. Strukturnya dapat anda simak dibawah ini:
Jika didapat sebuah matriks A dan B berupa
Contoh matriks perkalian |
maka dapat dikalikan dengan menggunakan sususan perkalian matriks berupa
Contoh matriks perkalian |
Dalam perkalian matriks terdapat istilah ordo matriks. Ordo tersebut ialah suatu elemen yang menerapkan jumlah baris dengan jumlah kolom pada operasi matriks. Berikut contoh ordo matriks dengan 6 buah elemen, sehingga mendapatkan hasil ordo matriks 3x2.
Selain penghitungan operasi matriks diatas, adapula jenis jenis pengoperasian matriks. Jenis operasi matriks tersebut memiliki rumus dan penghitungan yang berbeda. Berikut penjelasannya:
Jenis operasi matriks yang pertama ialah matriks identitas yang memiliki elemen diagonal utamanya bernilai 1.
Rumus Matriks Transpose
Rumus matriks identitas |
Matriks Transpose adalah operasi matriks yang mengalami pergantian bilangan kolom menjadi baris maupu sebaliknya. Untuk lebih jelasnya dapat anda simak contoh matriks transpose dibawah ini.
Rumus Matriks Transpose |
Determinan Matriks
Selanjutnya terdapat determinan matriks yang biasanya muncul dalam pengoperasian matriks. Operasi matriks ini menggunakan perkalian silang pada tiap diagonal dalam sebuah matriks. Perkalian silang tersebut kemudian dikurangkan untuk mendapatkan hasil akhir pada determinan ini. Seperti yang anda lihat dibawah ini terdapat contoh bilangan matriks A.
kemudian determinan matriksnya ialah
Selain menggunakan rumus diatas terdapat pula metode sarus dalam menghitung determinan matriks.
Untuk lebih jelasnya dapat anda simak skema metode sarus dibawah ini
Jika terdapat matriks A maka selanjutnya anda harus mencari determinan matriksnya, maka dapat menggunakan metode sarus sehingga mendapatkan model penghitungan matriks berupa:
Untuk lebih jelasnya dapat anda simak contoh metode sarus matriks dibawah ini:
Dalam mencari determinan matriks tidak hanya menggunakan dua metode diatas. Terdapat metode lain pengoperasian matriks yaitu berupa metode ekspansi baris maupun kolom.
Disamping ini terdapat sebuah matriks B yang akan dicari determinannya.
Dengan begitu anda dapat menggunakan metode ekspansi baris maupun kolom. Dengan menggunakan metode ini akan menghasilkan sususan berupa:
Determinan Matriks |
Selain menggunakan rumus diatas terdapat pula metode sarus dalam menghitung determinan matriks.
Determinan Matriks |
Skema Metode Sarus pada matriks |
cara menghitung matriks |
Penghitungan diatas ini tidak berhenti begitu saja karena kita harus mengalikan masing masing diagonal yang telah saya beri garis kuning dan biru diatas. Kemudian untuk perhitungan operasi matriks pada garis kuning dapat anda jumlahkan. Namun untuk penghitungan pada garis biru dapat ada kurangkan. Hasil kedua garis tersebut selanjutnya dapat anda kurangkan seperti pada gambar dibawah ini.
Untuk lebih jelasnya dapat anda simak contoh metode sarus matriks dibawah ini:
Dalam mencari determinan matriks tidak hanya menggunakan dua metode diatas. Terdapat metode lain pengoperasian matriks yaitu berupa metode ekspansi baris maupun kolom.
Disamping ini terdapat sebuah matriks B yang akan dicari determinannya.
Dengan begitu anda dapat menggunakan metode ekspansi baris maupun kolom. Dengan menggunakan metode ini akan menghasilkan sususan berupa:
Komentar
Posting Komentar